Model Question Paper-II with effect from 2021 (CBCS Scheme)

USN					

		FII	RST/SECOND Semester BE Degree Examination ENGINEERING PHYSICS - 21PHY12/22			
TIME: 03 Hours Max. Mark						
No	ote:	2. Dra 3. Cor JK ⁻¹	swer any FIVE full questions, choosing at least ONE question from each where ever necessary. Instants: Speed of Light " c " = 3 ×10 ⁸ ms ⁻¹ , Boltzmann Constant " k " = 1, Planck's Constant " h " = 6.625 × 10 ⁻³⁴ Js, Acceleration due to gravity 'ermittivity of free space " ε_0 "=8.854 ×10 ⁻¹² F m ⁻¹ .	38 ×10 ⁻²	23	
			Module -1	Marks		
Q.01	а	variation	the theory of forced oscillations and hence classify the conditions of a of amplitude and phase with angular frequency.	9		
	b		e the generation of shock waves using the Reddy shock tube.	6		
	С	oscillatio	e damping constant of the medium 0.1 kg s ⁻¹ calculate the amplitude of the ons at resonance given the mass attached to the spring-mass oscillator 50 x the amplitude of the applied periodic force 1N and the period of oscillations d.	5		
Q.02	а	Applying	g Hooke's law arrive at the equations for the effective spring constants of			
Q.02	a	Series ar	nd Parallel combinations of springs.	8		
	b	Enumera	ate the properties and applications of shock waves.	7		
	С	a bullet t	e the Mach number of a Jet fighter traveling with 2000 km hr ⁻¹ with that of traveling with a velocity of 400 ms ⁻¹ in the same medium given the speed of a the medium 330 ms ⁻¹ .	5		
			Module-2			
Q. 03	а		the spectral distribution energy in the black body radiation spectrum and aplain Wien's displacement law.	8		
	b		d Explain Heisenberg's Uncertainty principle and infer on the classical and n mechanical measurements.	7		
	С		etic energy of an electron is equal to the energy of a photon with a gth of 560 nm. Calculate the de Broglie wavelength of the electron.	5		
	_		OR			
Q.04	a	l .	the motion of a quantum particle in a one-dimensional potential well of the neight and of width 'a' and also examine the quantization of energy.	10		
	b		Rayleigh-Jeans law from Planck's Law of radiation.	5		
	С			5		
			Module-3			
Q. 05	a		he expression for energy density using Einstein's A and B Coefficients and raw infer on the relation B_{12} = B_{21} .	8		
	b		the attenuation and various losses in optical fibers.	7		
	С	Calculate	e the number of photons emitted per pulse of duration 1 microsecond given er output of LASER 3 mW and the wavelength of laser 632.8 nm.	5		
Q. 06	а	Define M	OR Modes of Propagation and RI Profile and Distinguish between the types of ibers.	6		

		Subject Code-21	-11112/22	
	b	Identify the requisites of the CO2 LASER and Explain its construction and working with the help of a neat sketch and band diagram.	9	
	С	Compare the acceptance angle of an optical fiber placed in air and water given the RI of water 1.33 and the RI of core and clad 1.5 and 1.45 respectively.	5	
		Module-4		
Q. 07	а	Explain the Quantum Mechanical modifications to the classical free electron theory of metals to explain the electrical conductivity in solids and its success.	7	
	b	What is Hall effect and illustrate on the determination of the type of charge carriers in semiconductors.	8	
	С	An elemental solid dielectric material has polarizability 7×10^{-40} Fm ⁻² . Assuming the internal field to be Lorentz, calculate the dielectric constant for the material if the material has 3×10^{28} atoms/m ³ .	5	
		OR		
Q. 08	а	Deduce the expression for electrical conductivity of a conductor using the quantum free electron theory of metals.	8	
	b	Describe in brief the various types of polarization mechanisms.	7	
	С	Calculate the probability that an energy level at 0.2eV below Fermi level is occupied at temperature 500K.	5	
Modul	le-5			
Q. 09	a	Define nano-material and classify the nano-materials based on the dimensional constraints.	5	
	b	Describe the construction and working of Scanning Electron Microscope with the help of a neat diagram.	10	
	С	X-rays are diffracted in the first order from a crystal with d spacing 2.8×10^{-10} m at a glancing angle 60 °. Calculate the wavelength of X-rays.	5	
		OR		
Q. 10	а	Mention the principle and applications of X-ray photoelectron spectroscope.	5	
-	b	Illustrate the working of Transmission Electron Microscope.	10	
	С	Determine the crystallite size given the Wavelength of X-Rays 10 nm , the Peak Width 0.5 °and peak position 25 ° for a cubic crystal given K = 0.94.	5	
	-			

Question		Bloom's Taxonomy Level attached	Course Outcome	Program Outcome	
Q.1	(a)	L2	1	1,2,12	
	(b)	L2	1	1,2,12	
	(c)	L3	1	1,2	
Q.2	(a)	L3	1	1,2,12	
	(b)	L1	1	1,2	
	(c)	L3	1	1,2	
Q.3	(a)	L1	2	1,2,12	
	(b)	L3	2	1,2,12	
	(c)	L3	2	1,2	
Q.4	(a)	L3	2	1,2,12	
	(b)	L2	2	1,2,12	
	(c)	L3	2	1,2	
Q.5	(a)	L4	3	1,2	
	(b)	L2	3	1,2	
	(c)	L3	3	1,2	
Q.6	(a)	L4	3	1,2	
	(b)	L2	3	1,2	
	(c)	L3	3	1,2	
Q.7	(a)	L2	4	1,2	

	(b)) L4		4	1,2	
	(c)	L3		4	1,2	
Q.8	(a)	L2		4	1,2	
	(b)) L2		4	1,2	
	(c)	L3		4	1,2	
Q.9	(a)	L1		5	1,2	
	(b)) L2		5	1,2,12	
	(c)	L3		5	1,2	
Q.10	(a)	L2		5	1,2	
	(b)) L2		5	1,2,12	
	(c)	L3		5	1,2	
		Lov	ver order t	hinking skills		
Bloom's Taxonomy		Remembering	Understa		Applying (Application)	
		(knowledge): L_1		nension): L_2	L_3	
Levels		Higher order thinking skills				
		Analyzing (Analysis): L_4	Valuating	(Evaluation): L_5	Creating (Synthesis): L	

